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Network accounts of the progression of Alzheimer's disease (AD), based on cross-sectional brain imaging ob-
servations, postulate that the biological course of the disease is characterized by coordinated spatial patterns
of brain change to distributed cognitive networks. This study tests this conjecture by quantifying inter-
regional covariance in cortical gray matter atrophy rates in 317 Alzheimer's Disease Neuroimaging Initiative
participants who were clinically diagnosed with amnestic mild cognitive impairment at baseline and
underwent serial MRI at 6-month intervals over the course of 2 years. A factor analysis model identified five fac-
tors (i.e. groupings of regions) that exhibited highly correlated rates of atrophy. Four groupings approximately
corresponded to coordinated change within the posterior default mode network, prefrontal cortex, medial tem-
poral lobe, and regions largely spared by the early pathological course of AD (i.e., sensorimotor and occipital cor-
tex), while the fifth grouping represented diffuse, global atrophy. The data-driven observation of “frontal aging”
superimposed upon medial temporal atrophy typical of early AD and default mode network changes supports
the view that in individuals at high risk of eventual clinical AD, multiple patterns of distributed neuronal death
corresponding to multiple biological substrates may be active.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Network accounts of brain injury in Alzheimer's disease (AD) are
ascendant (Seeley et al., 2009). The spatial progression of the patho-
logical hallmarks of AD has been well understood for many years
(Braak and Braak, 1991, 1997), and in vivo studies have noted pro-
gressive brain injury, spreading from medial temporal to frontal, lat-
eral temporal, and parietal regions, that partially mirrors this spatial
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progression (Jack et al., 1997; Thompson et al., 2003). But recent in
vivo studies have additionally suggested that the natural course of
the disease involves a coordinated attack on a distributed brain net-
work, termed the default-mode network (DMN), that deactivates
during execution of many cognitive tasks. Individuals clinically diag-
nosed with AD, and individuals at elevated risk of clinical AD, show
hypometabolism on fluorodeoxyglucose (FDG) positron emission to-
mography (PET) (Desgranges et al., 1998; Reiman et al., 1996) and
deficits on blood oxygenation level dependant (BOLD) functional
magnetic resonance imaging (MRI) (Celone et al., 2006; Greicius et
al., 2004) within this distributed network, including medial prefron-
tal, posterior cingulate, and inferior lateral parietal cortical regions.
These deficits may mirror injury to the neuronal soma in the same re-
gions, as indicated by T1-weighted structural MRI (Bakkour et al.,
2009), as well as degradation of the axonal architecture that connects
these regions into distributed networks, as indicated by diffusion MRI
(Chua et al., 2008; Greicius et al., 2009). These observations have aris-
en at a time when traditional imaging-based summary measures of
global or focal brain injury have shown limitations in their specificity
to clinical and pathological AD, with substantial overlap between
groups that do and do not display clinical symptoms and pathological
hallmarks (Carmichael et al., 2012; Jagust et al., 2008). The
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distributed network account of AD thus has the potential to identify
what differentiates AD-related brain changes from those associated
with healthy aging in terms of co-occurring change to distributed re-
gions, and thus boost both our understanding of the natural course of
the disease and the viability of imaging markers for clinical purposes
(Buckner, 2004).

However, the longitudinal imaging studies required to substanti-
ate network accounts of AD have largely been lacking. Multiple imag-
ing sessions per individual are required to show that individuals with
clinical or pathological hallmarks of AD display co-occurring, distrib-
uted brain changes over time that differ from analogous changes
displayed in healthy elders. To date, structural MRI studies supporting
the network view have either identified covariances among distribut-
ed regions that are related to clinical variables, using cross-sectional
imaging data (Bergfield et al., 2010; Brickman et al., 2007; Mechelli
et al., 2005; Zhu et al., 2012), or have shown that distributed patterns
of deficits at one time point are related to AD-associated clinical out-
comes in the future (Bakkour et al., 2009). Structural MRI studies that
did include longitudinal imaging, meanwhile, have suggested that
trajectories of change in global brain health and focal injury are highly
diverse in healthy elders (Raz et al., 2005, 2010; Resnick et al., 2003),
are related to concomitant cognitive change (McArdle et al., 2004),
and are accelerated on average among those with clinical AD and its
prodromes (Driscoll et al., 2009; McDonald et al., 2009). These studies
generally did not assess covariance of change across multiple regions
in an exhaustive way (Sullivan et al., 2002). Uncertainty about the de-
gree to which distributed, coordinated brain changes over time are
detectable on an individual level limit the viability of network hy-
potheses for characterizing the natural course of the disease.

The purpose of this study is to use longitudinal structuralMRI over a
2-year period to identify distributed patterns of coordinated gray mat-
ter atrophy in elderly individuals at high risk of clinical AD. In 317 indi-
viduals clinically diagnosed with amnestic mild cognitive impairment
(aMCI), an AD prodromal condition, we estimated individual rates of
change in 34 cortical regions (Desikan et al., 2006) and the hippocam-
pus over a 2 year period. We then used rigorous, data-driven statistical
methods to identify groups of regions whose rates of change are highly
correlated, aswell as determine the number of such groupings that pro-
vide the best explanation of longitudinal change.

Materials and methods

Data were obtained from the Alzheimer's Disease Neuroimaging
Initiative (ADNI; www.loni.ucla.edu/ADNI). The ADNI was a 5-year
study with a primary goal of testing whether serial MRI, positron
emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the
progression of amnestic mild cognitive impairment (aMCI) and early
Alzheimer's disease (AD). Subjects were recruited from over 50 sites
across the U.S. and Canada. The initial goal of ADNI was to recruit
800 adults, ages 55–90, including approximately 200 cognitively nor-
mal older individuals to be followed for 3 years, 400 people with aMCI
to be followed for 3 years, and 200 people with early AD to be
followed for 2 years.

This study includes data from317 ADNI subjects whowere clinically
diagnosedwith aMCI at baseline and forwhomMRI scandatawas avail-
able from some number of the following examinations: baseline,
6-month follow-up, 12-month follow-up, 18-month follow-up, and
24-month follow-up.

Clinical diagnosis and cognitive evaluation

The clinical assessment of ADNI subjects followed a standardized
protocol that was described previously (Petersen et al., 2010). At
each evaluation, all participants underwent a standardized clinical
evaluation and cognitive tests. Participants were included in the
aMCI group if they had a subjective memory complaint, objective
memory loss measured by education-adjusted Wechsler Memory
Scale-Revised Logical Memory II scores, a Clinical Dementia Rating
scale (CDR) global score of 0.5, absence of significant impairment in
other cognitive domains, preserved activities of daily living, and an
absence of dementia. Exclusion criteria included history of structural
brain lesions or head trauma, significant neurological disease other
than incipient Alzheimer's disease, use of psychotropic medications
that could affect memory, and a Hachinski Ischemic Scale score of 4
or greater. MRI findings that served as exclusionary criteria included
major hemispheric infarction, or structural abnormalities that severe-
ly distort normal brain anatomy such as tumor or prior resective
surgery.

The current study analyzes MRI data from the set of individuals
clinically diagnosed with aMCI at baseline.

Brain MRI acquisition

Individuals in the current study had brain MRI data available from
some combination of baseline, 6 month, 12 month, 18 month, and
24 month examinations. Acquisition of 1.5 T MRI data at each perfor-
mance site followed a previously described standardized protocol
that was rigorously validated across sites (Jack et al., 2008). The pro-
tocol included a high-resolution T1-weighted sagittal volumetric
magnetization prepared rapid gradient echo (MP-RAGE) sequence.
The ADNI MRI Core optimized the acquisition parameters of these se-
quences for each make and model of scanner included in the study.
Before being allowed to scan ADNI participants, all performance
sites were required to pass a strict scanner validation test, including
MP-RAGE scans of human subjects and a spherical fluid-filled phan-
tom. Additionally, each scan of ADNI participants included a scan of
the phantom, which was required to pass strict validation tests. All
vetted raw scan data was transferred to the University of California,
San Francisco for automated brain parcellation.

Brain MRI post-processing

MRI scans were parcellated into cortical regions of interest
using the longitudinal processing stream in FreeSurfer version 4.3
(surfer.nmr.mgh.harvard.edu). The T1-weighted MR image was first
transformed to the Talairach atlas (Talairach and Tournoux, 1988).
Next, themain body of whitematter was identified by atlas location, in-
tensity, and local neighbors. The variation in intensity acrosswhitemat-
ter was used to correct bias in the image. The image was then skull
stripped, leaving only the brain. Then the image was segmented into
subcortical white matter and deep gray matter structures (e.g. hippo-
campus; Fischl et al., 2002). The remaining voxels were classified as
whitematter or non-whitematter based on intensity and neighbor con-
straints. For each hemisphere, an initial surface was created along the
edge of white matter and refined to follow the white matter/gray mat-
ter intensity gradient. This surface was then pushed outward until the
intensity gradient between gray matter and cerebrospinal fluid was
reached (the pial surface) (Dale et al., 1999; Fischl and Dale, 2000).
Next, the sulcal and gyral pattern was aligned to the FreeSurfer average
surface (Fischl et al., 1999a, 1999b). This mapping to standard spherical
coordinates allowed for automated anatomical parcellation of the corti-
cal surface into 34 gyral regions. Regions included in the cortical
parcellation have been described previously (Desikan et al., 2006).
The surface parcellation allowed estimation of cortical volumes within
each region.

Each tissue segmentation and post-processed cortical parcellation
generated by FreeSurfer was assessed at UCSF for global and regional
success or failure using a standardized quality control protocol (avail-
able from the ADNI web site). MRI scans for individuals who possessed
at least three serial MRI scans that passed quality control were
re-processed using the longitudinal FreeSurfer workflow (Reuter et al.,
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2012). This workflowmirrors the steps that were performed separately
on each image in the longitudinal series, but in a combined optimization
to encourage longitudinal consistency in tissue segmentation and corti-
cal parcellation (Reuter and Fischl, 2011; Reuter et al., 2010).

There were four quality control outcomes for the UCSF FreeSurfer
pipeline based on visual inspection of the parcellated cortical and subcor-
tical region labels superimposed onto anatomical imagery (see http://
adni.loni.ucla.edu/wp-content/uploads/2010/12/ADNI_UCSF_Freesurfer-
Overview-and-QC.pdf). Scans that were rated as “Pass” showed high-
quality parcellation across all cortical and subcortical regions. Scans
rated as “Fail” showed a global failure to properly segment the ma-
jority of the brain due to gross mis-alignment or poor image quality.
Scans rated as “Hippocampus-only” showed a global failure to prop-
erly parcellate the cortical surface, but accurate segmentation of the
hippocampus. Scans rated as “Partial” showed a failure to accurately
parcellate the cortex in one of the following 7 zones: frontal cortex,
temporal cortex, insula, parietal cortex, occipital cortex, cerebral
white matter, and basal ganglia. For such scans, all regional volumes
within the indicated failure zone were excluded from data analysis.
The current study includes the 317 individuals who were diagnosed
with aMCI at baseline and who had at least one scan from among
baseline, 6-month, 12-month, 18-month, and 24-month follow-up
examinations that were not rated as “Fail.” Among all individuals di-
agnosed with aMCI at baseline, a total of 1616 MRI scans covering
baseline, 6-month, 12-month, 18-month, and 24-month exams
were run through the FreeSurfer processing pipeline. Among these,
1158 scans were rated as “Pass,” 380 were rated as “Partial,” 1 was
rated “Hippocampus only,” 67 were rated “Fail,” and quality control
ratings are missing for 10 scans. Among those rated as “Partial,”
parcellation failures in the temporal, frontal, parietal, insula, occipi-
tal, basal ganglia, and cerebral white matter zones were recorded
for 145, 347, 347, 86, 388, 67, and 347 scans respectively.

Statistical analysis

The two goals of statistical analysis were to (1) estimate per-
individual rates of change in each of the 34 gyral regions and the hip-
pocampus and (2) identify groupings of regions whose rates of
change were correlated. As detailed below, we used linear latent
growth curve models and exploratory structural equation modeling
(ESEM) to achieve these goals.

Pre-processing
For each individual and time point, FreeSurfer provides separate

measurements of the volumes of each gyral region in the left and
right hemispheres. For each region we calculated the average of cor-
responding left and right hemisphere volumes, and converted this bi-
lateral region volume to a z-score based on the distribution of
volumes from baseline scans. Secondary analyses using just the left
or right hemisphere regions were pre-processed the same way.

Individual rates of change
For each bilateral region volume, we used linear latent growth

curve models (McArdle, 2009) to estimate individual linear trajecto-
ries of regional volume decline. In these models, bilateral region vol-
ume was modeled in terms of time from baseline as a fixed linear
effect, and inter-individual variability in rate of change was modeled
as a random effect. We coded the time of MRI acquisition using a fixed
offset from baseline corresponding to 0, 6, 12, 18, and 24-month time
points, because visual inspection of the true MRI time point distribu-
tion did not suggest substantial or systematic deviation from these
standardized times. We also considered so-called “free time” models
that allow for modeling of non-linear change trajectories as other
ADNI investigators have advocated (Schuff et al., 2012), but visual in-
spection of estimated trajectories and model fit statistics suggested
that linear trajectories provided reasonable fit for most regions
(data not shown). Goodness of fit for each bilateral region volume
model was evaluated in terms of the standard comparative fit index
(CFI) and root mean squared error of approximation (RMSEA)
criteria. Bilateral regions for which the estimated inter-individual
variance in rate of change was low relative to the standard error of
the model (i.e., ratio of variance to standard error less than 2), or
for which the mean rate of change was not significantly different
from zero, were excluded from subsequent analysis. For all region
volume models passing these two tests, change rate estimates for
each individual were analyzed to determine inter-regional correla-
tion in change rates using Exploratory Structural Equation Modeling
(ESEM; Asparouhov and Muthuen, 2009).

Grouping regions according to covarying rates of change
We then assessed how well the set of change rate estimates is

modeled by exploratory factor analysis, a method for accounting for
the variance and covariance among a set of variables with a set of la-
tent variables and allowing for each observed variable to account for
unique variance. Because exploratory factor analysis models over a
range of factor numbers showed inadequate fit (see Results section),
we used ESEM to model inter-regional correlation in the residuals of
the factor analysis. This allows the model to capture the phenomenon
of structured deviations from expected behavior of multiple regions
in a local spatial neighborhood, which is not formally allowed in an
exploratory factor model. More specifically, any cortical parcellation
software is capable of placing boundaries between adjacent regions
in incorrect locations. Such measurement error artificially inflates
the volume of one of the two regions by a certain amount and artifi-
cially deflates the volume of the other region by the same amount.
In other words, in this scenario the measurement error in adjacent re-
gions is correlated. Standard factor analysis approaches do not allow
such error correlations to be non-zero; ESEM allows us to model
these inter-regional error correlations.

To model error correlations between adjacent regions, we started
with the average brain surface that FreeSurfer uses to guide the
parcellation of cortical surfaces of individual subjects. Each point on
the average brain surface is labeled as belonging to one of the 34 cor-
tical regions. For every possible pair of distinct cortical regions, we
determined whether there exists at least one pair of adjacent cortical
surface points such that one point is labeled as the first region in the
pair and the second point is labeled as the second. If any such point
pair is found, the pair of regions is labeled as adjacent to one another.
Correlations in residuals for all such pairs were modeled in the ESEM
model.

ESEM is a generalization of structural equation modeling that al-
lows for the inclusion of fixed or constrained parameters within an
exploratory factor analysis framework. In our case, we were interest-
ed in a data driven characterization of the shared covariance among
change in regional brain volumes, but we wanted to control for resid-
ual covariance caused by adjacency of brain regions. We used the ad-
jacencies to identify residual covariance parameters to freely estimate
within a general exploratory factor analysis framework. For ESEM
models with adequate goodness of fit, factor scores were analyzed
to determine which groups of regions changed in a coordinated
way. We used the Bayesian Information Criterion (BIC) to determine
the number of factors that best explained covariance in longitudinal
change.

Secondary analyses
Secondary analyses explored whether bilateral averaging of re-

gion volumes may have masked hemisphere-specific patterns of re-
gional change (Derflinger et al., 2011). We ran two analogous ESEM
models that included only right hemisphere region change rates,
and only left hemisphere region change rates, and compared the re-
gion the resulting region groupings with those of the primary model.
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Further secondary analyses explored the biological validity of the
factor structure of the primary ESEMmodel. For each individual and fac-
tor, standardized factor scores were recorded. These quantify the
degree to which the brain regions represented in a given factor
atrophied over time to a greater or lesser extent in each individual. Less-
er factor scores indicate more loss of brain tissue: the brain regions rep-
resented by the factor atrophied at a greater rate over the follow-up
period. Greater factor scores indicate greater preservation of the impli-
cated regions. To determine whether greater atrophy in specific factors
was associated with greater AD-associated cognitive decline, we used
one-tailed T tests to compare factor scores between individuals who
retained a diagnosis of aMCI throughout the follow-up period (n=
148) and individuals who converted to a diagnosis of clinical AD at
any point in the follow-up period (n=169). To determine whether
greater burden of AD pathology was associated with greater atrophy
to factors suggesting AD-associated neurodegeneration, we identified
subgroups of participants who received a lumbar puncture at baseline
and had the following three AD pathology markers measured from ce-
rebrospinal fluid using previously described techniques (Trojanowski
et al., 2010): amyloid beta 1–42 (Abeta, n=164); total tau protein
(Tau, n=161); and tau protein phosphorylated at threonine 231
(P-tau, n=165). We calculated the Pearson correlation between the
CSF concentrations of these markers and the factor scores for each of
the 5 factors. For Tau and P-tau, negative correlation coefficients mean
that greater baseline levels of the CSF protein—suggesting greater bur-
den of ADpathology—were associatedwith greater amounts of brain at-
rophy over time. For Abeta, positive correlations mean that lesser
baseline levels of the CSF protein—suggesting greater burden of AD
pathology—were associated with greater amounts of brain atrophy
over time.

Results

General subject characteristics are summarized in Table 1. The group
of 317 baseline-aMCI ADNI participants analyzed in the current study is
broadly similar to the group of 80 baseline-aMCI ADNI participants who
were not included due to a lack of available MRI data. However, partic-
ipants in the current study were more likely to be Caucasian, and were
slightly more likely to be female and left-handed.

Diagnostic summaries of linear latent growth curve models for re-
gional volume change are summarized in Table 2. Model fit was gen-
erally excellent, with CFI generally near 1 and RMSEA generally below
.03. Relatively poor model fit under these criteria was observed for
the following regions: cuneus, frontal pole, insula, lateral occipital
cortex, lingual gyrus, parahippocampal gyrus, pericalcarine cortex,
and temporal pole. The mean rate of change in all regions was signif-
icantly different from zero at the pb .05 level. For two regions, the
Table 1
Basic characteristics of ADNI participants diagnosed at baseline with aMCI, comparing
those who did and did not have MRI data required for inclusion in this study.

Baseline aMCI with
longitudinal MRI

Baseline aMCI without
longitudinal MRI

n 317 80
Baseline age 75.4+/−7.2 74.8+/−8.3
Gender (% male) 63.7% 67.5%
Handedness (% right) 90.5% 93.8%
Race (% Caucasian) 100.0% 67.5%
Years of Education 15.7+/−3.0 15.5+/−3.3
Baseline MMSE 27.1+/−1.7 26.7+/−1.9
APOE (% with at least
1 e4 allele)

52.7% 56.3%

Number of MRI at each
time point

Baseline 313
6-month 300
12-month 297
18-month 262
24-month 215
estimate of individual variability in the rate of change was small rel-
ative to its standard error: pericalcarine cortex and inferior frontal
gyrus - pars orbitalis. Therefore, these latter two regions were exclud-
ed from subsequent analyses of inter-regional covariance in rates of
change. Summary regional change statistics for all 35 regions are
listed in Table 3.

Exploratory factor analysis with 1–11 factors showed inadequate
model fit; no model had an observed RMSEA below .05, and all
models involving fewer than 8 factors had CFI values lower than .95
(data not shown). A 5-factor ESEM model with pre-specified residual
covariances based on adjacency minimized the Bayesian information
criterion over all models containing between 1 and 5 factors, and had
a CFI of 0.91 and RMSEA of 0.086.

Factor loadings for the 5 factor ESEM model are shown visually in
Figs. 1 and 2. The first four factors correspond to co-occurring change
in groupings of regions that largely represent: 1. DMN - posterior cin-
gulate, precuneus, inferior parietal, lateral temporo-parietal cortex,
and the hippocampus; 2. the frontal lobe; 3. medial temporal cortex,
4. sensory, motor, occipital, and parietal regions including the superi-
or parietal lobule and cuneus. The fifth factor represents diffuse, glob-
al change.

The right and left hemisphere ESEM models both identified co-
occurring change within frontal, medial temporal, and lateral tempo-
ral lobes as in the bilateral model, although lateral temporal and
medial temporal changes were joined within the same factor (data
not shown). Both models also identified a component of diffuse, glob-
al change. Subtle differences emerged between the models in terms of
parietal cortex change: while the model for the left hemisphere iden-
tified distinct factors corresponding to coordinated parietal and
occipital change respectively, the model for the right hemisphere
broke up the parietal lobe into two distinct factors.

Those who converted from aMCI to AD showed evidence of much
greater atrophy within Factors 1, 2, and 3, which in our schema
roughly correspond to the DMN, prefrontal cortex, andmedial tempo-
ral structures compromised by AD (Table 4). Such differences were
much more muted for Factors 4 and 5 (p>.01), which correspond
to regions generally spared early in the AD course, and non-specific
global atrophy. Individuals who had elevated levels of AD pathology
burden at baseline (Tau, P-Tau, and ABeta) had greater subsequent
atrophy within Factors 1 and 3, which represent the DMN and medial
temporal structures (Table 5).

Discussion

The key finding of this study is that, among individuals clinically
diagnosed with aMCI at baseline, five distinct spatial patterns of cor-
tical atrophy over a 2-year period were detectable in an unbiased, sta-
tistically rigorous analysis. In a well-defined statistical sense, the five
spatial patterns provided a superior explanation of longitudinal gray
matter atrophy than a single, unifying pattern of global change. The
implication is that in the context of prodromal AD, longitudinal
brain change may be more accurately modeled in terms of multiple,
distinct, spatially distributed atrophy patterns rather than global
change or focal lesions to isolated compartments.

Converging evidence from multiple streams of late-life neuroimag-
ing research suggest that the first four spatial patterns may represent
Table 2
Fit diagnostics for linear latent growth curve models of brain regional change.

Mean S.D. Range

Mean estimated slope −0.21 (0.08) [−0.37,0.03]
Mean estimated slope over
standard error [z-test]

−11.94 (4.76) [−21.07,2.23]

CFI 1.00 (0.00) [0.99,1.00]
RMSEA 0.03 (0.03) [0.00,0.09]
P-value from model chi-square 0.31 (0.30) [0.00,0.86]



Table 3
Mean baseline volumes and 2-year changes in volume for the 35 cortical regions.
Values are derived from the regional intercepts and slopes output by linear latent
growth curve modeling. Mean absolute baseline volume and amount of 2-year change
is in units of mm3. Standardized 2-year change is expressed in standard deviation
units: a value of −1 indicates that on average, the region lost 1 standard deviation in
volume over 2 years.

Region Mean volume
at baseline

Mean absolute
2-year change

Mean standardized
2-year change

Hippocampus 5808.8 −302.4 −0.29
Banks of superior temporal
sulcus

4195.8 −187.9 −0.24

Caudal anterior cingulate 3698.8 −91.7 −0.14
Caudal middle frontal gyrus 10131.5 −356.1 −0.19
Cuneus 5013.4 −37.4 −0.04
Entorhinal cortex 3397.7 −219.7 −0.27
Frontal pole 1282.2 −36.5 −0.13
Fusiform gyrus 16510.5 −804.8 −0.33
Inferior parietal lobule 21962.9 −767 −0.22
Inferior Temporal Gyrus 18768.4 −993.4 −0.31
Insula 11229.7 −344.9 −0.24
Isthmus of cingulate 4012.3 −154.6 −0.24
Lateral occipital 20562.1 −453.3 −0.14
Orbital frontal 12527 −353.1 −0.24
Lingual 11320.8 −203 −0.12
Medial orbital frontal 7572.8 −252.4 −0.25
Middle temporal gyrus 18721.1 −987.6 −0.34
Paracentral lobule 6258.9 −95.5 −0.09
Parahippocampal gyrus 3746.4 −190.9 −0.33
Pars opercularis 7269.4 −232.8 −0.19
Pars orbitalis 4010.4 −105.1 −0.17
Pars triangularis 5911.7 −135.9 −0.12
Pericalcarine 3486 −19.4 −0.03
Postcentral gyrus 15759.2 −166.9 −0.08
Posterior cingulate 5833.4 −196.8 −0.24
Precentral gyrus 21455.6 −519 −0.18
Precuneus 15309.1 −511.3 −0.23
Rostral anterior cingulate 3729 −101.2 −0.15
Rostral middle frontal gyrus 24612.1 −726.3 −0.19
Superior frontal 36011.3 −1219.8 −0.24
Superior parietal lobule 21432.3 −477.4 −0.15
Superior temporal sulcus 19043.8 −747.8 −0.27
Supramarginal gyrus 17413.9 −574.8 −0.23
Temporal pole 3806.8 −234.2 −0.37
Transverse temporal 1703.1 −66.1 −0.2
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separable effects of differing biological processes related to aging and
AD.

• Factor 1 prominently features posterior cingulate, precuneus, and
inferior parietal regions that constitute the posterior section of the
so-called default-mode network that is also hypothesized to include
medial prefrontal cortex (Buckner, 2004). Evidence from structural
and functional MRI, as well as amyloid PET and FDG-PET, suggest
that this network may be selectively compromised by the AD patho-
logical process, may disconnect into anterior and posterior sub-
networks over the course of the disease, and may be intimately
involved in cognitive functions compromised in AD, especiallymem-
ory (Andrews-Hanna et al., 2007; Buckner et al., 2005; Greicius et al.,
2004; Reiman et al., 1996; Sperling et al., 2009).
• Factor 2 mainly represents atrophy of the prefrontal cortex, whose
gray matter structures andwhite matter connections are believed to
weaken in a coordinated fashion in so-called “frontal aging” accounts
of the mild cognitive deficits, especially to executive control, that
have been noted to accompany advancing age in the absence of
clinically evident neurodegenerative disease (Buckner, 2004;
Pfefferbaum et al., 2005; Raz et al., 1997).
• Factor 3 is dominated by atrophy to the medial temporal lobe,
long known to be the earliest locus of neurofibrillary tangle depo-
sition during the pathological course of AD (Braak and Braak,
1991), and long known to exhibit focal atrophy to specific struc-
tures that correlate strongly with tangle burden and clinical status
(Jack et al., 1992, 1997, 2005).
• Factor 4, meanwhile, is mainly represented by regions such as
the sensory strip and occipital cortex that are generally considered
to be spared of extensive neuronal loss early in the pathological
course of AD.
• Factor 5 represents brain atrophy that is distributed fairly uni-
formly throughout the cortex.

In summary, the general trend is for the five identified factors to
correspond to changes to frontal, medial temporal, posterior default
mode network, and AD-spared regions, along with diffuse, global at-
rophy. The validity of the factors is supported by their plausible asso-
ciations with concurrent cognitive decline and AD biomarkers: those
who declined from aMCI to clinical AD experienced greater atrophy to
the factors associated with frontal aging, the posterior default mode
network, and AD-associated medial temporal structures. In addition,
greater burden of AD pathology at baseline was associated with great-
er atrophy to the two factors most strongly tied to AD: the posterior
default network and the medial temporal lobe. The importance of
this finding is that it in a group of individuals assumed to be in the
early stage of the AD pathological process, multiple coherent modes
of longitudinal brain atrophy may be acting simultaneously, each of
which corresponds to a distinct biological substrate. Future work
should clarify whether, as appears in the current data, nominally
healthy frontal brain aging is superimposed with default mode and
medial temporal changes early in the progression of brain changes
that eventually culminate in Alzheimer's disease.

Obtaining an adequate representation of longitudinal regional
change required a loosening of the EFA assumptions to allow neigh-
boring regions in any individual to deviate from population mean
change in a correlated way. We consider two possible scenarios
under which such neighborhood correlations would arise. The sim-
plest possibility is that neighborhoods of regions actually do deviate
from average behavior in a coordinated way: in any individual, the
underlying biological processes leading to greater than expected atro-
phy to one region may in fact lead to greater than expected atrophy to
an adjacent region. Uncertainties in the correspondences between
MRI macrostructural region boundaries and the cytoarchitectonic
boundaries that define true region-specific change make this possibil-
ity especially plausible (Hinds et al., 2008; Yeo et al., 2010a, 2010b).
However, another other possibility is that these neighborhood corre-
lations are capturing minor measurement error in the placement of
inter-regional boundaries. That is, in the absence of any longitudinal
change, any erroneous fluctuation over time in the boundary between
one region and its neighbor will necessarily have the dual effect of ar-
tificially increasing the volume of one region, and correspondingly
lowering the volume of the other, thus causing the two regions to de-
viate from true zero change in a coordinated way. Further, our simu-
lations suggest that such correlated deviations from expected
behavior persist when such erroneous longitudinal boundary fluctua-
tions are superimposed upon true, co-occurring regional volume
change (data not shown). Luckily, numerous prior validation studies
have suggested that FreeSurfer boundaries agree strongly with
ground-truth manual boundary tracings, and that the software pro-
duces biologically plausible and self-consistent estimates of longitu-
dinal change (e.g. Han et al., 2006; Jovicich et al., 2006). However,
while the sheer magnitude of such region boundary errors is likely
to be small, future work should nonetheless more deeply explore
the effect that this type of boundary measurement error may have
on estimates of inter-regional coordination in volume change.

Longitudinal brain change along the trajectory from normal cogni-
tion to clinical ADmay follow a complex and nonlinear trajectory that
depends strongly on diverse array of factors, including demographic



Fig. 1. Visual depiction of the five groupings (factors) of regions that showed high covariance in rates of change according to ESEM modeling. For each factor, regions shown in
orange to yellow had strongly co-varying change. The five factors correspond roughly to: 1. posterior default mode network and the hippocampus; 2. the frontal lobe; 3. medial
temporal cortex, 4. sensory, motor, occipital, and parietal regions; 5. diffuse, global change.
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factors, genetics, and concomitant diseases (Atwood et al., 2004;
Buckner, 2004; DeCarli, 2006; Raz et al., 2005; Sowell et al., 2003).
The ADNI cohort, by design, represents only a very narrow sampling
of those factors. Participants were overwhelmingly Caucasian, highly
educated, and were selected to be free of significant concomitant vas-
cular disease (Petersen et al., 2010). The ADNI aMCI group was select-
ed to emphasize a “purely” amnestic sub-type at the expense of other
domains of impairment that may fairly commonly co-occur with
memory loss in the community (Ganguli et al., 2004). The ADNI nor-
mal sub-group was so uniformly healthy that they showed minimal
brain changes over 2 years of follow-up; the magnitude of regional
atrophy was so small, and inter-regional covariation in change was
so minimal, that a factor analysis similar to the one presented here
was impossible (data not shown). Thus, it is not clear how the results
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Fig. 2. Listing of region groupings (“factors”) that showed coordinated longitudinal
change according to factor analysis. Within each factor, regions shown in orange to yel-
low had strongly co-varying change.

Table 5
Correlations between standardized factor scores and three cerebrospinal fluid based
AD biomarkers (total tau protein, Tau; amyloid beta 1–42, ABeta; and tau protein phos-
phorylated at threonine 231, P-Tau). Pearson correlation coefficients (ρ) and p values
for the correlations are shown; correlations with pb .01 are shown in bold. For Tau
and P-tau, negative correlation coefficients mean that greater baseline levels of the
CSF protein—suggesting greater burden of AD pathology—were associated with greater
amounts of brain atrophy over time. For Abeta, positive correlations mean that lesser
baseline levels of the CSF protein—suggesting greater burden of AD pathology—were
associated with greater amounts of brain atrophy over time.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Tau ρ −0.3993 −0.0115 −0.1746 0.1093 0.0992
Tau ρ 0 0.885 0.0268 0.1677 0.2104
ABeta ρ 0.29 0.0585 0.19 0.0168 0.1163
Abeta ρ 0.0002 0.4568 0.0148 0.8314 0.1382
P-tau ρ −0.4025 −0.069 −0.1761 0.0685 0.1069
P-tau ρ 0 0.3785 0.0237 0.3819 0.1718
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of the current study generalize to the broader population, where
brain aging is expected to be more heterogeneous (DeCarli et al.,
2005). In addition, aging-associated brain change likely plays out
over the course of many years, perhaps decades (Havlik et al., 2002;
Korf et al., 2004; Swan et al., 1998), while our study only analyzed
change over a narrow 2-year interval. Our observation of multiple bi-
ologically patterns of brain change over such a short interval thus mo-
tivates future work that applies the statistical methodology to more
diverse samples, covering different portions of the spectrum of cogni-
tive decline, imaged over longer intervals.

Each factor includes a minority of additional structures that do not
fit cleanly into its overall coherent theme. The hippocampus, for
example, had fairly high weightings for both Factor 1 and Factor 3
(.43 vs. .31; see Fig. 2), suggesting that hippocampus change covaried
significantly with that of both the medial temporal lobe and the
Table 4
Mean standardized factor scores among individuals who retained a clinical diagnosis of
aMCI throughout follow-up (second column), and among those who converted to a
clinical diagnosis of AD at any point during follow-up (third column). Lesser scores in-
dicate greater loss of brain tissue within the indicated factor. P values for one-tailed
t-tests comparing mean factor scores between converter and non-converter groups is
also shown (fourth column; pb .01 shown in bold).

Factor Non-converter Converter p

1 −0.23 (0.01) −0.30 (0.01) b0.0001
2 −0.17 (0.01) −0.21 (0.01) 0.0007
3 −0.20 (0.01) −0.26 (0.01) b0.0001
4 −0.14 (0.01) −0.13 (0.01) 0.9156
5 −0.21 (0.01) −0.23 (0.01) 0.0112
posterior default network. Covariation with the medial temporal
lobe is intuitive, but covariation with the default network is plausible
as well; the hippocampus and default network exhibit tight function-
al connectivity during episodic memory task execution, and this con-
nectivity declines during the progression of AD (Greicius et al., 2004).
It is plausible that degeneration of such network connectivity is ac-
companied by coordinated atrophy of the connected regions. Similar-
ly, the lingual gyrus also has non-trivial weightings for both Factor 3
and Factor 4 (.7 vs. .46; see Fig. 2). The association with occipital
structures in Factor 4 is biologically plausible. We speculate that the
association between lingual gyrus and Factor 3 may be due to difficul-
ty in delineating the boundary between the lingual gyrus and adja-
cent parahippocampal gyrus. Adequate modeling of longitudinal
change in the parahippocampal gyrus was not possible, possibly be-
cause this boundary was not delineated with adequate precision.
Additionally, systematic error in this boundary could have led
parahippocampal atrophy to be reflected in lingual atrophy. In this
case, if parahippocampal atrophy were associated with atrophy of
other medial temporal structures, atrophy of the lingual gyrus
would co-vary with medial temporal atrophy as a by-product.
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